FAQ sur les nouveaux aliments

Les nouveaux aliments constituent un domaine en évolution rapide, avec le traitement des aliments et boissons. Beaucoup de personnes ont donc des questions sur les implications de la production des nouveaux aliments et sur l'impact qu'elle produira sur le marché dans les années à venir. Sur cette page, nous avons essayé de répondre à quelques-unes des questions les plus courantes dans le domaine des nouveaux aliments.

Vous souhaitez obtenir des informations plus approfondies ? Téléchargez Augmenter la production des fermentations de la biomasse et de précision.

Questions d'ordre général sur les nouveaux aliments

Fried food on plate

Que signifie le terme de « nouveaux aliments » ?

Broadly speaking, new foods (which are sometimes also called novel foods) are exactly that: ingredients and products that have not previously been consumed as foods or beverages. The term can also apply to existing dishes and ingredients that are produced through innovative new processes or technologies, as well as food items that have an established history in one part of the world but are considered “new” somewhere else.

From a regulatory standpoint, the legal definition of what constitutes a “new” or “novel” food will vary from region to region. Most new food legislation focuses on ingredients, process or technologies that do not have an established history of safe use in food production in that particular jurisdiction. For businesses, manufacturers and retailers working in this space, it is important to know exactly what applies from your local authorities, as this can impact approval for introducing new products on the market.

Quels éléments dirigent le développement de la production de nouveaux aliments ?

Several interconnected socio-political, environmental and market factors. These include the need for:
  • sustainable food systems, a less resource-intensive supply chain and alternatives to animal-based ingredients in order to reduce environmental impact
  • food safety – as there is no animal contact in new fermentation processes, risks of zoonosis and contamination from animals are heavily reduced
  • enough food to support a growing population
  • alternatives to animal-based ingredients in order to meet consumer demand.

Que sont les systèmes alimentaires durables ?

According to the Food and Agriculture Organization of the United Nations (FAO), a sustainable food system is one that is:
  • economically sustainable: the enterprise is profitable for all stakeholders across every part of the value chain
  • socially sustainable: the food produced offers benefits for society broadly, such as food security that ensures healthy and nutritious diets for everyone
  • environmentally sustainable: production and consumption of the food has a positive or neutral impact on the planet and our natural resources4.

Que sont les « protéines alternatives » ?

Being macronutrients we need to survive, proteins are an essential part of the human diet. In addition to nutritional benefits, there are functional proteins that support solubility, emulsification, gelation and foaming, water binding and heat stability. Functional proteins – more specifically, some enzymes – can also catalyse specific chemical reactions to give food items certain desired flavours or textural properties.

Today, our food systems are heavily reliant on animal-based protein sources like meat, fish, eggs and dairy. The term “alternative proteins” generally means alternatives to these sources in particular. There is a great deal of development in the new food space today devoted to finding additional sources to proteins that fulfil key nutritional and functional roles in food and beverage production.

There are many different potential sources for alternative proteins, but innovation in this area can generally be organized into four main categories:
  • Plant-based
  • Fermentation-based
  • Cultivated meat
  • Insects

Que signifie « forte teneur en protéines » ?

Protein makes up for approximately 20% of an average human body, and we get protein from our diet. When it comes to protein content in food, the EU and the UK regulations allow two official claims:
  • “High protein” indicates that the product contains at least 20% protein
  • “A source of protein” indicates that the protein content is between 12 and 20%

    Quel est le rôle des ingrédients d'origine végétale dans la production des nouveaux aliments ?

    Once thought of just in terms of “vegetarian” or “vegan”, today the broader label of “plant-based” is typically used for food and beverage products where the key ingredients come from plants. Such ingredients can include vegetable and fruit ingredients as well as grains, seeds, legumes and more.

    Plant-based ingredients have been important to developing new food products over the last several years. Today there is an ever-growing category of alternative foods and beverages that rely primarily or exclusively on plant-based ingredients produced through innovative new processes.

    Quel est le rôle de la fermentation dans la production des nouveaux aliments ?

    Microbial fermentation processes have been used to produce, enhance and preserve foods and beverages for thousands of years. It is the key behind everything from bread and beer, to cheese and yoghurt, to pickles and kimchi – and much more.

    When we talk about fermentation in the context of new foods, however, we’re talking about a category of processes that have only begun being used in food production much more recently. In particular, there are two main types of processes that have become the focus of development in the new food space:
    • Biomass fermentation, in which vast quantities of unicellular microorganisms are “grown” and “harvested” to either be used as ingredients in food production, or formulated for end-use.
    • Precision fermentation, in which microorganisms are utilised as a means of producing proteins, fats, vitamins or other compounds that can serve as functional ingredients in food production.

    Qu'est-ce que la viande cultivée ?

    Cultivated meat, also known as cultured meat or cellular lab-grown meat, refers to meat that is grown directly from cells. In this process, cells are used to build muscle tissue and fat in a biological process that is the same as what happens inside of an animal.

    Meat cultivation thereby allows for the production of bio-identical “real” meat products, but without the use of live animals and the resource consumption that animal husbandry requires. In theory, the production of cultivated meat could therefore provide an efficient way of producing highly desirable new food products and ingredients in the years to come.

    Qu'est-ce que l'agriculture cellulaire ?

    Cellular agriculture is a term that is sometimes used to refer to a category of processes where cell cultures are involved in the production of new food ingredients. This can include both meat cultivation and fermentation processes.

    Fermentation de la biomasse

    Stew and rice on plate

    Qu'est-ce que la fermentation de la biomasse ?

    Biomass fermentation, which is generally also called “single-cell production,” (although some producing microbes may be multicellular) harnesses fermentation to produce high quantities of a specific microorganism. During fermentation, the microorganism grows and multiplies, resulting in a large collection of microorganisms known as a microbial biomass. This biomass can then be “harvested”, separated from broth, purified and used as either an ingredient in food and beverage production or formulated for direct end-use.

    In other words: the microorganisms that reproduce through the biomass fermentation process are themselves ingredients. And they can reproduce very quickly – in some cases, doubling the size of the biomass in hours, compared to months or years for animals. Common microorganisms used in these processes include microfungi, yeast or microalgae.

    Quelle est la différence entre la fermentation de la biomasse et la fermentation de précision ?

    In biomass fermentation, the microorganisms that grow and reproduce are themselves ingredients.

    In precision fermentation, the microorganisms themselves are not used as ingredients. Instead, they are “programmed” to produce certain proteins, fats, vitamins or other compounds which can be harvested for use as functional ingredients.

    La fermentation de la biomasse peut-elle être considérée comme un processus de « nouvel aliment » ?

    Biomass fermentation itself is not new to commercial food processing. In fact, there are examples of biomass fermentation processes used in the production ingredients since the early twentieth century. Even the production of microfungal biomass proteins, now a common application area, dates back at least to the 1970s, when it was first used for animal feed5.

    At the same time, biomass fermentation processes are currently being used to produce innovative foods and ingredients that can very much be described as “new foods.” Developers in this space are continuously exploring new microorganism strains and new applications that can be used to introduce new products. Today, much of the focus is on creating new types of alternatives to traditional meat and fish products.

    Quels types d'applications alimentaires font appel à la fermentation de la biomasse ?

    Today, biomass fermentation is increasingly used in the development of alternative foods and ingredients that can replicate characteristics of conventional, animal-based food products. A key application area is the development of meat and fish substitute products (meat analogues). Protein-rich strains of microfungi have often been used for this application, as they can provide a texture and mouthfeel similar to traditional meat and fish products. Production of meat and fish substitutes using yeast and microalgae is also a growing area of development.

    Que sont les nouveaux aliments « hybrides » ?

    Biomass fermentation can also be used in the development of so-called “hybrid” new food products. In these cases, ingredients produced through biomass fermentation are combined with plant-based or cultivated meat ingredients. By using different ingredients that offer different characteristics, the intended result is typically to better reproduce the flavour, textural or nutritional profiles of particular animal-based food products.

    Où en est le marché de la fermentation de la biomasse actuellement ?

    According to the non-profit Good Food Institute, there were at least 136 active companies “focused primarily on fermentation for alternative proteins” as of 2022. 74 of these companies focus on biomass fermentation, and the majority of those specialise in producing analogues to various meat and seafood products1.

    Les ingrédients fabriqués avec la fermentation de la biomasse sont-ils végétaliens ?

    Yes. As these ingredients are never derived from animals, they are considered vegan.

    Quel type d'équipement utilise-t-on pour la fermentation de la biomasse commerciale ?

    Most fermentation processes involve a fermenter or bioreactor. In precision and biomass fermentation a bioreactor is needed to provide a controlled environment for the microorganisms and induce the production of the target ingredients. Additional equipment is needed upstream of the fermenter to prepare the microorganism and the feed it needs for fermentation. For example, powder handling, heat treatment and high shear mixing are essential technologies to prepare the media for the fermentation process. A seed train is a sequence of special equipment to produce certain amount of biomass which is introduced to the broth media of the reactor to start the process. There are also equipment needs downstream of the fermenter to further process (concentrate, separate, formulate etc) the biomass for the intended ingredient or product.

    There is a huge range of processing equipment and technologies to be considered, and selecting the right solutions will depend on the nature of the microorganism in question and the type of product being produced. This is an area where businesses can draw on extensive knowledge from the food industry broadly. Working with partners that have broad experience of commercial food and beverage production can therefore be a good idea when setting up the solution.

    Fermentation de précision

    Milk in glass and glass jug

    Qu'est-ce que la fermentation de précision ?

    In precision fermentation, microorganisms are “programmed” to reproduce certain target proteins or other compounds that can be “harvested” for use as functional ingredients for new food and beverage products.

    The target ingredients in question can be proteins, fats or sugars found in traditional, animal-based ingredients, which impart certain taste, textural or nutritional characteristics. In other words, precision fermentation makes it possible to produce vital ingredients from eggs, dairy or meat – without any need for live animals.

    La fermentation de précision peut-elle être considérée comme un processus de « nouvel aliment » ?

    Precision fermentation has a history stretching back several decades. It is a well-understood and used process in pharmaceutical manufacturing.

    In food production, precision fermentation has traditionally been used for producing enzymes. Examples include enzymes used in juice extraction, as well as the production of non-animal rennet used for making cheese.

    However, it is only recently that precision fermentation has been explored as a means of creating alternative proteins, fats and sugars traditionally found in animal-based sources. As this is a new – and still developing – application area, products such as dairy or egg proteins produced in this fashion are generally classified as “new foods.”

    Quels types d'applications font appel à la fermentation de précision ?

    The number of potential applications for this technology is virtually limitless. Many of the application areas for precision fermentation deal with so-called “hybrid” products.

    The types of new food ingredients currently being explored with precision fermentation can include:
    • Proteins and fats traditionally found in meat and fish
    • Proteins and sugars traditionally found in milk
    • Proteins traditionally found in eggs
    • Honey that is bioidentical to that produced by bees

    Que sont les nouveaux aliments « hybrides » ?

    Precision fermentation can also be used in the development of so-called “hybrid” new food products. In these cases, ingredients produced through precision fermentation are combined with, for example, plant-based or cultivated meat ingredients. By using different ingredients that offer different characteristics, the intended result is typically to better reproduce the flavour, textural or nutritional profiles of particular animal-based food products.

    Où en est le marché de la fermentation de précision actuellement ?

    According to the non-profit Good Food Institute, there were at least 136 active companies “focused primarily on fermentation for alternative proteins” as of 20221. The majority of these companies focus on biomass fermentation, but the number of precision fermentation-based companies is growing quickly. There were at least 62 active precision fermentation companies as of 2022, and the primary focus is products using non-animal fats or proteins from dairy3. However, regulatory issues – which are present in most geographies – mean that many precision fermentation companies face hurdles in getting products approved for commercial food production.

    En quoi la fermentation de précision est-elle différente de la culture de viande ?

    In precision fermentation, specific proteins, fats, vitamins or other compounds with functional properties are reproduced by microorganisms and then harvested to be used as a functional ingredient in further food and beverage processing.

    In meat cultivation, the meat is produced by cultivating animal cells directly7., but microorganisms are not involved. Here, the cells provide the basic elements needed to build muscle tissue and fat.

    La fermentation de précision utilise-t-elle des organismes génétiquement modifiés ?

    Genetic engineering is an inherent part of the precision fermentation process, as it starts with identifying a target gene and encoding this into the DNA of a bacteria or other microorganism. The result of the gene encoding is what is known as a genetically modified microorganism (GMM), which in many geographies is subject to similar regulatory oversight as other genetically modified organisms (GMOs) used in the food and beverage industry. However, the end-goal of most precision fermentation processes is to produce an ingredient that is not, itself, genetically modified.

    Les ingrédients fabriqués avec la fermentation de précision sont-ils végétaliens ?

    Precision fermentation is capable of producing many different ingredients, including animal-like recombinant proteins and other nutrients from meat, milk and eggs. Here, this happens without the involvement of animals. Hence, precision fermentation products are often labelled “animal-free”.

    However, as per the definition from vegan.org6., a vegan product must not
    • contain any animal products
    • use any animal products in the production process
    • involve any animal testing

    In other words: whether a specific precision fermentation-derived ingredient meets the vegan criteria depends on the interpretation of the manufacturer, the consumers and the relevant local regulatory bodies.

    Quel type d'équipement utilise-t-on pour la fermentation de précision commerciale ?

    Most fermentation processes involve a fermenter or bioreactor. In precision and biomass fermentation a bioreactor is needed to provide a controlled environment for the microorganisms and induce the production of the target ingredients. Additional equipment is needed upstream of the fermenter to prepare the microorganism and the feed it needs for fermentation. There are also equipment needs downstream of the bioreactor to, for example, separate, purify and further process the intended target ingredient.

    Many of the technologies that can be considered for commercial ingredient production with precision fermentation were originally developed for other types of food and beverage manufacturing. For businesses in this space preparing to make the leap from lab and pilot-scale production, there may be a lot of questions about how to best select the right equipment. A partner with broad knowledge of food and beverage processing can support with technological solutions that make precision fermentation processes viable at commercial scale.

    Pour en savoir plus sur le rôle que nous avons joué dans l'ouverture de possibilités végétales pour nos clients, consultez notre page dédiée aux produits d'origine végétale.

    En savoir plus sur notre équipement et nos solutions de traitement.

    En savoir plus sur les nouvelles solutions alimentaires

    Contacter notre équipe commerciale

    Service engineers training

    Nos équipes commerciales seront heureuses de répondre aux questions relatives aux ventes ou aux produits. Veuillez remplir notre formulaire pour nous permettre de mieux vous aider.

    • 1 Objectif
    • 2 Demande
    • 3 Contact

    Motif du contact

    Veuillez sélectionner une option

    Secteur d'activité d'intérêt

    Sélectionnez un ou plusieurs domaines d’activité
    Veuillez sélectionner le secteur d'activité d'intérêt

    Contacter notre équipe commerciale

    Résumé

    Motif du contact
    Secteur d'activité d'intérêt
    • 1 Objectif
    • 2 Demande
    • 3 Contact

    Secteur d'intérêt spécifique

    Veuillez sélectionner une option

    Contacter notre équipe commerciale

    Résumé

    Motif du contact
    Secteur d'activité d'intérêt
    • 1 Objectif
    • 2 Demande
    • 3 Contact

    Portée de la demande

    Veuillez sélectionner une option

    Catégorie alimentaire

      Veuillez sélectionner une option
      Veuillez sélectionner une option
      Veuillez sélectionner une option
      Veuillez sélectionner une option
      Veuillez sélectionner une option
    Veuillez sélectionner une option

    Contacter notre équipe commerciale

    Résumé

    Motif du contact
    Secteur d'activité d'intérêt
    • 1 Objectif
    • 2 Demande
    • 3 Contact

    Secteur d'intérêt spécifique

    Veuillez sélectionner le secteur d'activité d'intérêt

    Contacter notre équipe commerciale

    Résumé

    Motif du contact
    Secteur d'activité d'intérêt
    Secteur d'intérêt spécifique
    Portée de la demande
    Catégorie alimentaire
    • 1 Objectif
    • 2 Demande
    • 3 Contact

    Ce qui décrit le mieux votre demande

    Veuillez sélectionner une option
    Veuillez renseigner ce champ

    Contacter notre équipe commerciale

    Résumé

    Motif du contact
    Secteur d'activité d'intérêt
    Message
    Secteur d'intérêt spécifique
    Portée de la demande
    Catégorie alimentaire
    Ce qui décrit le mieux votre demande
    Votre rôle
    • 1 Objectif
    • 2 Demande
    • 3 Contact

    Informations sur l'entreprise

    Veuillez entrer votre email dans ce format : example@company.com
    Veuillez renseigner ce champ
    Veuillez renseigner ce champ
    Veuillez renseigner ce champ
    Veuillez renseigner ce champ
    Veuillez sélectionner une option
    Veuillez renseigner ce champ

    En transmettant ce formulaire, vous confirmez avoir lu et reconnu la politique de confidentialité de Tetra Pak.

    Merci pour votre intérêt

    Votre demande a été envoyée à nos équipes et nous vous contacterons dans les meilleurs délais. Veuillez cliquer sur le bouton ci-dessous si vous souhaitez soumettre une autre demande ou si vous souhaitez nous poser une autre question.

    1: Carter, Michael et Madeline Cohen, Lucas Eastham, Daniel Gertner, Emma Ignaszewski, Dr Adam Leman, Sharyn Murray, Maille O’Donnell, Ben Pierce, Sheila Voss. GFI (2023). Fermentation: Meat, seafood, eggs, and dairy. 2022 State of the industry report. https://gfi.org/resource/fermentation-state-of-the-industry-report/

    2: Ibid.
    3: Gyr, Audrey. GFI (2022). Fermentation: Meat, seafood, eggs, and dairy. 2021 State of the industry report. https://gfi.org/resource/fermentation-state-of-the-industry-report/
    4: FAO (2018). Systèmes alimentaires durables : Concept and framework. https://www.fao.org/3/ca2079en/CA2079EN.pdf

    5: Byrne, Jane. Feed Navigator (2020). Finnish team bringing dormant SCP production process back to life for use in fish feed. https://www.feednavigator.com/Article/2020/01/02/Team-bringing-dormant-SCP-production-process-back-to-life

    6: Certified Vegan Standards, https://vegan.org/certification/

    7: Good Food Institute, https://gfi.org/science/the-science-of-cultivated-meat/